skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haseloff, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal fluctuations at the grounding zones of marine‐terminating glaciers induce oscillations in effective pressure at the glacier bed, altering ice‐till coupling and glacial slip. Glaciers slipping atop deformable beds with oscillatory pressure fluctuations can generate a transient porewater pressure feedback within the underlying till, affecting bed coupling and the yield stress of the till. The influence of this transient feedback can range from negligible to dominating glacier slip; however, little is known about the governing mechanics. We used a cryogenic ring shear device to simulate basal slip under oscillating pressure conditions with varying amplitudes to directly measure drag under transient forcing. We find a path dependence (hysteresis) within the shear stress–effective pressure relationship and a greater extent of deformation within till undergoing cyclic loading compared to static loading. Importantly, shear stress is greater when effective pressure is unloading, indicating potential stabilizing feedbacks during rising tides or anomalous fluid pressure spikes. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026